LECTURE PLAN DEPARTMENT OF PHYSICS

NAME: PROF.G.P.Gupta

SESSION: 2018-2021

DESIGNATION: ASST. PROF.

COURSE: B.Sc SEMISTER IV

PAPER NAME: PHY-CC-8.T: MATHEMATICAL PHYSICS-III

SL. No	Topic/Sub Topic	Expected No. of Lecture
01.	Complex Analysis: Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity. Integration of a function of a complex variable. Cauchy's Inequality & Theorem. Cauchy's Integral formula. Laurent and Taylor's Theorem. Residues and Cauchy's Residue Theorem. (24 Lectures)	24
02.	Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). Three dimensional Fourier transform with examples, Application of Fourier transforms to differential equations: one dimensional wave and diffusion/heat flow equations. (18 Lectures)	18
03.	Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function.(18 Lectures)	18
	Total Lecture=	60

Reference Books:

- 1. Mathematical Methods for Physicists and Engineers, K.F Riley, M.P. Hobson and S. J. Bence,
- 3rd ed., 2006, Cambridge University Press
- 2. Mathematics for Physicists, P. Dennery and A.Krzywicki, 1967, Dover Publications
- 3. Complex Variables, A.S.Fokas & M.J.Ablowitz, 8th Ed., 2011, Cambridge Univ. Press

LECTURE PLAN DEPARTMENT OF PHYSICS

NAME: PROF.G.P.Gupta

DESIGNATION: ASST. PROF.

B.Sc SEMISTER IV COURSE:

SESSION: 2018-2021

PAPER NAME: PHY-CC-9.T: ELEMENTS OF MODERN PHYSICS

SL. No	Topic/Sub Topic	Expected No. of
		Lecture
	Quantum Mechanics: Planck's quantum, Planck's constant and light as a	
	collection of photons;	
	Blackbody Radiation: Quantum theory of Light; Photo-electric effect and	
	Compton scattering. De	
01	description of particles by	12
01.	wave packets Group and Phase velocities and relation between them two slit	12
	experiment with	
	electrons, probability, wave amplitude and wave functions. Bohr	
	Correspondence Principle (12	
	Lectures)	
	Position measurement-gamma ray microscope through experiment, Wave-	
	particle duality,	
	Heisenberg uncertainty principle (Uncertainty relations involving Canonical	
02.	pair of variables):	
	Derivation from Wave Packets impossibility of a particle following a	10
	trajectory; estimating minimum	
	energy of a confined particle using uncertainty principle, Energy-time &	
	Position-momentum uncertainty principle (10 Lectures)	
	Two slit interference experiment with photons, atoms and particles: linear	
	superposition principle as	
	a consequence: Matter waves and wave amplitude: Schrodinger equation for	
03.	non-relativistic	
	particles; Momentum and Energy operators; stationary states; physical	10
	interpretation of a wave	
	function, probabilities and normalization; Probability and probability current	
	densities in one	
	dimension. (10 Lectures)	
	Size and structure of atomic nucleus and its relation with atomic weight;	
04	Impossibility of an electron	
04.	rage 15 01 24	08
	nuclear force. Liquid	
	Drop model: semi-empirical mass formula and binding energy. (8 Lectures)	
	Radioactivity: Stability of the nucleus: Law of radioactive decay: Decay	
05	constant, Mean life and halflife, successive disintegration; methods of	00
	measurement of half-life, spectra of emitters, Elementary	08
	idea of Alpha decay; Beta decay.(8 Lectures)	
06	Fission and fusion- mass deficit, relativity and generation of energy; Fission -	
	nature of fragments and	04
	emission of neutrons. (4 Lectures)	
	Lasers: Spontaneous and Stimulated emissions. Einstein's A and B	
	COEfficients. Metastable states.	00
	Optical runiping and Population Inversion. Infee-Level laser system and He-	Uð
	Laser (8 Lectures)	
	Total Lecture=	60

Reference Books:

Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
Introduction to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill

3. Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.

LECTURE PLAN DEPARTMENT OF PHYSICS

NAME: PROF.G.P.Gupta

DESIGNATION: ASST. PROF.

COURSE: B.Sc SEMISTER IV

SESSION: 2018-2021

PAPER NAME: PHY-CC-10.T: DIGITAL SYSTEMS AND APPLICATIONS

SL. No	Topic/Sub Topic	Expected No. of
		Lecture
	Introduction to CDO: Dia al Discrement of CDO. Electron Curr	
	Introduction to CRO: Block Diagram of CRO. Electron Gun,	
01	Deflection System and Time Base.	10
01	Deflection Sensitivity. Applications of CRO: (1) Study of waveform,	10
	(2) Measurement of Voltage,	
	Current, Frequency, and Phase Difference. (10 Lectures)	
	Boolean algebra: De Morgan's Theorems. Boolean Laws.	
00	Simplification of Logic Circuit using Boolean	
02	Algebra. Karnaugh Map -Idea of Minterms and Maxterms. Conversion	12
	of a Truth table into Equivalent	
	Logic Circuit by (1) Sum of Products Method and (2) Product of Sum	
	Method(12 Lectures)	
	Digital Circuits: Difference between Analog and Digital Circuits.	
	Binary Numbers. Decimal to Binary	
03	and Binary to Decimal Conversion.BCD, Octal and Hexadecimal	
	numbers. AND, OR and NOT Gates	14
	(realization using Diodes and Transistor). NAND and NOR Gates as	
	Universal Gates. XOR and XNOR	
	Gates and their applications. (14 Lectures)	
	Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's	
	Complement.Half and Full	
04	Adders.Half & Full Subtractors, 4-bit binary Adder & Subtractor.(10	10
	Lectures)	
	Data processing circuits: Basic idea of Multiplexers, De-multiplexers,	
05	Decoders, Encoders, BCD to 7	04
	segments (4 Lectures)	
	Conversion: Resistive network (weighted and R-2R ladder), accuracy	
06	and resolution, A/D conversion	04
	(successive approximation). (4 Lectures)	
	Timers: IC 555: block diagram and applications: Astable multivibrator	
	and Monostable multivibrator.	06
	(6 Lectures)	
	Total Lecture=	60

Reference Books:

1. Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed.,

2011, Tata McGraw

2. Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd. Page 16 of 24

3. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.

SL. No	Topic/Sub Topic	Expected No. of Lecture
01	Measurement of Planck's constant using black body radiation and photo-detector	
02	To determine the Planck's constant using LEDs of at least 4 different colours.	
03	To determine the wavelength of laser source using diffraction of single slit.	
04	To determine the wavelength of laser source using diffraction of double slits.	
05	To design a switch (NOT gate) using a transistor.	
06	To verify and design AND, OR, NOT and NOR gates using NAND gates.	
07	To design a combinational logic system for a specified Truth Table.	
08	To convert a Boolean expression into logic circuit and design it using logic gate ICs.	
09	Half Adder, Full Adder and 4-bit binary Adder.	
10	Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.	
11	To design an astable multivibrator of given specifications using 555 Timer.	
12	To design a monostable multivibrator of given specifications using 555 Timer.	
13	To design a digital to analog converter (DAC).	
14	To study the analog to digital convertor (ADC).	

Reference Books :

1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia

Publishing House

- 2. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal
- 3. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall.